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Abstract— Quantum chemistry applications such as the
General Atomic and Molecular Electronic Structure System
(GAMESS) that can execute on a complex peta-scale parallel
computing environment has a large number of input parameters
that affect the overall performance. The application characteris-
tics vary according to the input parameters. This is due to the dif-
ference in the usage of resources like network bandwidth, I/O and
main memory, according to the input parameters. Effective exe-
cution of applications in a parallel computing environment that
share such resources require some sort of adaptive mechanism to
enable efficient usage of these resources. In our previous work, we
have integrated GAMESS with an adaptive middleware NICAN
(Network Information Conveyer and Application Notification) for
dynamic adaptations during heavy load conditions that modify
execution of GAMESS computations on a per-iteration basis.
This leads to better application performance. In this research, we
have expanded the structure of NICAN in order to include other
input parameters based on which application performance can
be controlled. The application performance has been analyzed on
different architectures and a tuning strategy has been identified.
A generic database framework has been incorporated in the
existing NICAN mechanism so as to aid this tuning strategy.

I. INTRODUCTION

GAMESS [12] is one of the applications used by chemists
worldwide to perform ab initio calculations. MOLPRO
[21], NWChem[7], MPQC[6] , Q-Chem [25], Psi3 [26] and
MOLCAS [27] are some of the other packages that are
used for performing ab initio calculations. Computational
chemistry applications such as GAMESS are widely
used to perform ab initio molecular quantum chemistry
calculations. These calculations include a wide range
of Hartree-Fock(HF) wave function calculations such as
RHF(Restricted Hartree-Fock) for species with all electrons
paired (closed shells), ROHF(restricted open shell Hartree-
Fock) and UHF(unrestricted Hartree Fock) for open shell
species, GVB(Generalized valence bond wavefunction)
and MCSCF(Multiconfigurational SCF wavefunction). The
capabilities of GAMESS has been described in detail in
[12] and in the available GAMESS distribution. Using the
Hartree-Fock self consistent field (SCF) method, GAMESS
iteratively approximates a solution to the Schrödinger equation
that describes the basic structure of atoms and molecules.
The SCF method has two implementations, direct and

conventional, which differ from each other in the handling
of the two-electron (2-e) integrals. In the conventional SCF
method, the 2-e integrals are calculated once at the beginning
of the SCF process and stored in a file on disk for subsequent
iterations. In the direct SCF method, the 2-e integrals are
recalculated for each iteration.

There are many different approaches to tuning high
performance chemistry applications like compiler based
optimizations, performance modeling and adaptive algorithms.
Dongarra and Eijkhout [1] discuss about Self-adapting
Numerical Software systems that consist of a framework to
automatically pick the best software/hardware combination
for high performance computing. Li et al. [10] have described
a component based method that enables CQoS(Computation
Quality of Service) through a generic database component.
This component interacts with different chemistry components
to provide an adaptive mechanism that achieves better
performance than any trial and error approach. Ustemirov
et al. use [22] a middleware tool NICAN to perform this
adaptation in GAMESS. We obtained some GAMESS
performance data and analyzed part of this data in our
work Exploring Tuning Strategies for Quantum Chemistry
Applications [15]. In this work, we have utilized these
analysis results, created a performance database to store
this data, devised a database assisted tuning strategy and
incorporated it into the NICAN functionality. The results
obtained by implementing this tuning strategy have been
presented in this paper.

The rest of the paper is organized as follows. Section II
provides an introduction to the integration of the NICAN
library with GAMESS. Section III looks at the methodology
followed to obtain the performance benchmarking results on
different architectures. The tuning strategy formulated based
on the GAMESS performance testing has been described in
Section IV. Section V showcases the database framework
modifications to NICAN and presents the results obtained
using the modified adaptation mechanism. Finally we talk
about the future direction that this work can take in Section VI.



II. GAMESS-NICAN INTEGRATION

Fig. 1. NICAN layout

Network Information Conveyer and Application Notification
or NICAN [19] is a framework that is used to provide methods
for applications to adapt their utilization of computational
resources based on various conditions. NICAN has been
successfully integrated with several applications to aid their
execution in a distributed environment. The adaptation in
GAMESS using NICAN was designed for SMP (Symmetric
Multi Processor) clusters in order to improve GAMESS
performance [22] and it focused on the SCF algorithm.
Selection of the correct electronic structure calculation
routine has a very big effect on the overall computation time.
The iterative nature of the SCF algorithm allows us to switch
between the conventional and direct implementations in an
arbitrary SCF iteration. The switching is carried out using
NICAN in order to decouple the application from having
to make any adaptation decisions during its execution. The
application is responsible only for the invocation of the
adaptation handlers. The adaptations are handled by a control
port that is part of the NICAN tool. The adaptation scheme
consists of a static and a dynamic part. Every conventional
GAMESS job gets modified to a direct execution mode if
there exists a “peer” conventional GAMESS job already
running in the system [22], [23]. This constitutes the static
adaptation method. During the dynamic adaptation phase,
the control port gathers system and application information
during the iterative SCF calculations and decides on the
adaptation at runtime. The algorithm has been explained in
[22] and [14]. The experimental results obtained for this
algorithm on a SMP have been given in [22]. It has been
shown on a two processor system with I/O congestion, that
the performance of dynamically adaptive GAMESS is nearly
the same as a “no-congestion” case. If the I/O bandwidth is
fully consumed, then the adaptation scheme gives a two time
improvement in the execution time of GAMESS. Also, on
running two simultaneous parallel GAMESS jobs on two and
four processors, a gain of 10-15 percent in the cumulative
execution time is obtained through the dynamic adaptation
scheme.

III. METHODOLOGY

We have observed in the works by Ustemirov, Sosonkina
et al. ([22]) and Li, Kenny et al[10] that the adaptation

algorithm depends only on the wall clock time. In [22],
the data regarding the iteration time is collected on-the-fly
and utilized by the middleware NICAN in order to make
the adaptation decision. In [10], the data is collected offline
and fed into a database which helps make a decision on
tuning the quantum chemistry application. One of the
disadvantages of using only coarse grained performance
data is that it prevents us from gaining insight into how
and why a computation performs differently on different
architectures, and why different sets of molecules can show
totally different performance characteristics. We can get
a better understanding of these issues if we profile the
application on different architectures allowing us to analyze
the application performance thoroughly. This would also
help us to improve existing tuning strategies. To design
tuning strategies for large parameter set applications such
as GAMESS, a methodology that spans data acquisition,
performance data, metadata management and performance
analysis is desired. We proceeded to design this tuning
strategy by following a collection-analysis-implementation
method. The performance data for GAMESS was collected on
different architectures and using different sets of molecules so
as to understand the application performance variation. Using
this data, application performance analysis was performed
and the performance trends were identified. An adaptation
strategy was formulated depending on these trends.

Fig. 2. Molecules Used

In order to obtain the performance data for analysis, we
chose two different sets of molecules for testing. One set of
molecules has a varying molecular structure that allows us
to analyze the performance characteristics as the molecule
size varies. These molecules were Benzene(bz) and its dimer,
Naphthalene (np) and its dimer (np-dimer), Adenine-Thymine
DNA base pair (AT), Guanine-Cytosine DNA base pair(GC)
and Buckminsterfullerene (C60). The second set of molecules
(Picene, Pentacene, Dibenz Anthracene (J and H) , Benzo
naphthacene and Benzo triphenylene) were very similar to
each other in structure and allow us to see the performance
variation for minute molecular changes. These tests were
conducted on three different architectures. One was an Ames
Laboratory SMP cluster “Borges”, consisting of 4 nodes,
each node having two dual-core 2.0GHZ Xeon Woodcrest”



CPUs. The second was the NERSC Franklin cluster with
each of Franklin’s compute nodes consisting of a 2.3 GHz
single socket quad-core AMD Opteron Budapest” processor.
The third architecture was a stand alone machine running on
the Sun Niagara T2 processor [20], [8]. The T2 processor
has a unique architecture that consists of 8 SPARC physical
processor cores built in a single chip and each core is capable
of running 8 threads. The application profiling was done
using the TAU [16] (Tuning and Analysis Utility) toolkit,
which is a popular multi-level and multi-user source code
profiler and instrumentor. Using TAU, we split the application
run time into the time spent by the application in computing
the required data, the time spent by different threads of the
program communicating with each other and the time spent
by the program in moving the data back and forth between
the disk and the memory (the time spent in I/O). These three
components usually provide a good insight as to where the
application is getting slowed down during its execution. Since
usage of the TAU profiler may slow down the application
considerably, the profiler was operated on functions that can
be broadly classified as ones which provide communication,
IO and computation. The profiler output data for each of
these functions invoked by GAMESS, were collated to obtain
a value for the total time spent on communication, IO or
computation. Further details regarding the methodology used
has been provided in [15].In this paper, we have provided
the scalability results only for the Franklin cluster and the
Niagara system.

IV. PERFORMANCE ANALYSIS AND TUNING STRATEGY

Some of the performance analysis has been published in
[15]. We summarize those performance results below, give
new analysis data and then show how the tuning strategy
was formulated on the basis of these results. The tests
were conducted for different input combinations of the two
molecule sets. We concentrated on combining the direct and
conventional implementations with HF-SCF computations
(Skip the electron correction) and MP2 computations (Möller-
Plesset 2nd order energy correction, increased output accuracy)
for 13 molecules. On each architecture, we performed at
least 8 different test runs for different combinations of input
processors and nodes. The performance tool split the wall
clock time as communication time, computation time and I/O
time. This allowed us to broadly generalize the performance
trends for the selected molecules and the input parameters.
We obtained 96 different sets (molecule name, architecture,
SCF type, Order of perturbation) of performance data for a
single molecule. The data sets would increase even further
if we get the data for other SCF implementations like
UHF and ROHF or if we modify the run type from energy
to optimize, gradient etc. The challenge is to ensure that
this data is in an easily analyzable format to discover the
performance issues and decide on strategies for consistent
good performance. Also, all the performance data should
be stored in a manner which allows easy data management.

Hence it was decided that a database containing the relevant
data would be integrated with GAMESS-NICAN.

The direct and conventional methods of execution for
GAMESS differ in the way that the SCF computations are
performed. Since the direct implementation uses the available
memory for computations, it is intuitive that the computation
time for a direct implementation would take the most amount
of time while the I/O time would be negligible. On the
other hand, the conventional implementation time would have
some I/O component. Also, for most implementations, it can
be deduced that the conventional implementation would be
faster since getting the integral data from the files would be
faster than recalculating it. However, for larger molecules,
it has been shown in [23] that the conventional execution
slows down if there is a high IO usage in the system. This
difference in the execution time of conventional and direct
implementations is exploited in [22] to obtain an adaptation
mechanism. Other GAMESS implementation trade-offs are
possible as long as they don’t compromise the desired
accuracy or theory level. For example, for the MP2 level
of theory the computation time is very high but HF-SCF,
which is a lower level of theory, may not be substituted for
MP2 as a means of adaptation to the environment. Instead,
one may focus on running MP2 more efficiently and use the
adaptation mechanism as a check on the amount of memory
requirement to run the job as stated by the user in the input
file. The results on the three architectures have shown that
specific input node and processor combinations have different
characteristics. Having this data enables us to decide the
best possible input node-processor combination for running
the application in order to obtain the optimum performance.
Detailed analysis of the performance data has been published
in our work [15].

The computational effort of ab initio methods scales
formally as at least N4 where N is the number of basis
functions describing the atom. While expanding an unknown
function such as a molecular orbital, into a set of known
functions, we would require an infinite number of such
functions. These represent the complete basis for the
unknown function. However, this is not possible and we end
up using a finite basis to represent the unknown function. For
finite basis, only the components of the molecular orbitals
along coordinate axis corresponding to selected bases can be
represented. A smaller basis gives a poorer representation and
affects the accuracy of the ab initio methods. Thus, a balance
between accuracy of solution and computational efficiency
can be achieved by the proper choice of the basis set [5]. For
all the performance tests conducted and represented in [15]
and in this paper, we have used a Dunning-type correlation
consistent (cc) basis set [12], [5] for a specific hierarchy
level (polarized valence double Zeta). There are a total of
391 published basis sets as given in the Basis Set Exchange
[3], [13]. For each basis set type, the number of gaussian
basis functions and basis set shells vary and this variation



TABLE I
BASIS SET DETAILS (CCD) FOR DIFFERENT MOLECULES

Molecule np-dimer C60 AT

Basis Set Shells 168 360 174
Cartesian Gaussian Basis Fns 380 900 400

Molecular Orbitals 360 840 321

can be used as a means of comparing different molecules.
The table I shows the basis set functions and shells(Cartesian
gaussian basis function groupings) for the molecules np-
dimer((C10H8)2), C60(C60) and AT(C5N5H5 · C6N2O2H6).

We can see the correlation between the number of Basis
set shells and Cartesian Gaussian Basis functions to the
performance of the individual molecules (np-dimer and C60).
The performance of these two molecules has been detailed
in [15]. As the basis set shells and functions increase, the
runtime of the application for a molecule increases, and the
computational complexity also increases. The scaling factor of
4 increases even further for post-Hartree-Fock computations
(MP2 scales as N5) as the number of basis functions increase.
This is evident from the performance values obtained for MP2
computations. For the purposes of this study it is assumed
that two molecules with the same number of basis functions
will have approximately the same 2-e integral demands, even
though in reality this is not strictly true. The basis set for
a given molecule allows us to analyze the computational
requirements and performance for that molecule. It may be
considered as a useful tool to extrapolate to the performance
of a molecule given the basis set parameters from any other
molecule whose performance characteristics are known.

V. DATABASE ASSISTED ADAPTATION AND RESULTS

There were two separate issues associated with the perfor-
mance data that was generated. The data management is a huge
part of the problem mainly due to the amount of performance
data generated. We would require different analysis methods
and programs in order to obtain all relevant information related
to the application and system performance. This analysis
should help us to devise new rules for the GAMESS-NICAN
adaptation mechanism. The adaptation architecture was de-
vised with these two objectives in mind.

A. Adaptation Architecture

Figure 3 shows the complete architecture of the database
adaptation framework. It is important to note that the data
management as well as the adaptation are considered as part
of this framework. The architecture can be divided into two
distinct sections. In the offline “Performance Data Collection
and Analysis” section, we instrument the GAMESS code using
TAU, collect the performance data for different combinations
of the application and system parameters and store the data
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Fig. 3. Database Adaptation Architecture

into a PostGreSql [2] performance database. This data is
then analyzed by separate programs to obtain such metrics
like scalability on a particular machine. The second section
of the architecture is the “Decision and Activation” Stage
which involves the application adaptation using the NICAN
middleware tool.

B. Adapatation Strategy

The amount of data generated for the 13 molecules
on the three different architectures for different input
combinations clearly showed a need for using full fledged
performance scenarios in the adaptation process. We chose
PostGreSql database for storing the application metadata
and the adaptation related data. The application connects to
the database using a database daemon server (DBd) that is
started by the application. The application ensures that only
a single DBd is running for that particular machine, since we
have a single database instance for the entire machine. The
architecture is similar to a client-server architecture wherein
the different application jobs running on the machine are the
clients connecting to a single DBd server. The user provides
the database connection string to the application through the
existing NICAN XML file. This enables each user to connect
to his own schema in the performance database. The database
stores machine specific details like the cluster node names,
node configurations, available memory and other performance
related details such as the best node-processor combination.
The data format of the data exchanged between the DBd
and the NICAN module is predefined. The database class
provided to the NICAN module contains all the functions
required to extract the result from the database. One other
advantage of using a DBd server is that different modules of
the same application job can connect to the database at the
same time. Currently, the database management is handled
manually and the data for each molecule is inserted by the
programmer.



The tuning strategy that we propose on the basis of the
results obtained augments the existing NICAN adaptation
strategy. The current implementation of NICAN requires a
check run in order to get the memory requirements of the
input molecule. We have offloaded this information into the
database. The amount of data being written by GAMESS into
files depends on the input parameters chosen. For example,
when the gbasis value is taken as CCQ (Dunning-type
Correlation Consistent polarized Valence Quadruple Zeta) ,
the amount of data written for the conventional method is
very large. The external disk sizes on clusters are normally
huge. However, it is possible that in case of small clusters,
the disk size might get exceeded due to residual files. Hence,
NICAN calculates the amount of space available to store
integral files and in case sufficient space is not available, the
implementation can be modified to direct. In our work [15],
we showed that MP2 computations for large molecules such
as C60 fail if the required shared memory is not available
on every node for constructing the required matrices. Thus,
the shared memory availability is a very important factor
in the success of a MP2 computation. It is not possible for
us to change the shared memory on every node depending
on the requirement of every single job. The solution would
be to distribute the job on multiple nodes and provide the
required memory to the GAMESS job. NICAN compares the
memory requirement and the memory requested by the user.
The job is immediately stopped if the memory requested by
the user is less than the memory required to execute the job.
The correct value of DDI memory is printed in the log file.
This ensures that the job is stopped before the start of a very
expensive execution instead of producing failure at the MP2
calculation stage.

From the performance analysis, we have seen that
for a given number of application processes on a given
architecture, the most efficient application performance on
a given architecture is obtained at a specific distribution
of GAMESS processes per core/node. Such combinations
are stored in the database for each particular operating
environment. For example, on a Sun T2 Niagara machine,
the best method to obtain fastest application run time would
be to distribute the number of GAMESS processes to as
many cores as possible. This approach may not guarantee
the best performance for all scenarios though. Obviously,
this adaptation would be possible only if there are cores or
nodes (in case of Franklin and Borges) available so as to
distribute the processes. We can get a decent speed up for
large molecules by increasing the number of cores used for
execution on the Niagara machine. The adaptation between
conventional to direct is an existing feature in NICAN and
we have not modified the algorithm. The database framework
has been incorporated as an easy extensibility to the NICAN
features.

C. Database framework adaptation results

The database modification to the NICAN adaptation was
tested on Borges using two representative molecules, AT and
C60, and for SCF computations. The database was created on
Borges and the necessary data was inserted into this database.
The results are shown in Figure 4. It is possible to show
the performance gain of the database framework by using a
single molecule. But the test run would not be able to take
advantage of the static adaptation. The Y-axis of the graph
shows the combined execution time for both these molecules.
The X-axis of the graph represents the input node-processor
combination. We can see that the performance improvement
varies from around 28% to 54%. This improvement is mainly
due to offloading the idealized iteration time to the database
instead of computing it every time the adaptation has to run.
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The host configuration modification would ensure that for a
specific number of processes, the input node-processor config-
uration is always changed to a particular value. For example, if
the user requests 4 processes, the best performance is obtained
when the job is run on 4 nodes with each node running a single
process. The results for host configuration modification are
shown in Figure 5. We have also tested the other capabilities



added to NICAN. The GAMESS adaptation was tested when
the filesystem limit was reached. The filesystem limit was
kept at 95% and the GAMESS execution was modified from
conventional to direct when this filesystem limit was reached.
The NICAN library was modified to check the database
for MP2 memory requirements and then compare it with
the memory requested by the user. The job is appropriately
terminated if the memory requirements do not match.

D. Database Framework Scalability Analysis

The performance data collected can be utilized for different
analyses and derive a variety of analysis results. One
advantage of having a vast amount of performance data for
an application such as GAMESS is to be able to analyze the
scalability of the application on different architectures and
deduce the inflection point for the performance degradation
or for performance improvement. Our scalability analysis
indicates the improvement in the performance of GAMESS
on a particular architecture, when the number of cores or
nodes, on which the application is executed, is increased. We
have shown the scalability analysis of GAMESS on Franklin
and Niagara processors below.

The scalability of GAMESS on the different architectures
is calculated using a separate C program. This program
operates on the TAU results file; takes the molecule name
and SCF type as input and outputs the scalability results in
tabular format. Scalability is calculated as the inverse ratio
of the total time taken by GAMESS on a given number of
nodes and the total time taken by GAMESS for a single
node, when the number of GAMESS processes per node is
constant. In other words, we are defining a strong scalability
for GAMESS as we try to plot the variation in the solution
time with the number of processors for a fixed problem size.
A node can contain multiple cores and hence is capable
of running multiple processes. The tables II, III, IV and
V show SCF for the molecule AT. The tables VI and VII
show the MP2 scalability for the molecule AT. The ‘X’
values indicate that results were not obtained for those
particular combinations. Consider the following example
to understand the scalability calculation. Table IV shows
the scalability of a conventional GAMESS job on Franklin.
As per our definition, the scalability while using 16 nodes
and a single process on each node, would be the inverse
ratio of total time obtained by running a single process of
GAMESS on 16 nodes each and the total time obtained
by running a single process of GAMESS on a single node.
Since there are no results available for the denominator, we
use the time for the minimum number of nodes used, which
in this case equates to the total time required to complete
a GAMESS job on 8 nodes running a single process per node.

tN =Total run time of GAMESS on a given number of nodes.
t1=Total run time of GAMESS for a single node.

Scalability = 1
tN
t1

TABLE II
AT HF-SCF CONVENTIONAL ON NIAGARA T2 PROCESSOR

Cores 1 2 4 8

Procs Per Core

1 X 1 1.89 3.32

2 1 1.88 3.34 X

4 1 1.75 X X

8 1 X X X

TABLE III
AT HF-SCF DIRECT ON NIAGARA T2 PROCESSOR

Cores 1 2 4 8

Procs Per Core

1 X X 1 1.93

2 X 1 1.93 X

4 1 1.94 X X

8 1 X X X

Consider the results shown in Tables II, III for the Niagara
machine. Since the Niagara machine consists of a single
node and 8 cores, the scalability is calculated with respect
to the increase in the number of cores. We can see that as
we increase the number of cores and keep the number of
processes per core constant, the scalability increases similarly.
The scalability is better than Franklin. However, the runtimes
are slower than Franklin mainly due to the sharing of the
L2 Cache and the I/O channel between the cores. Franklin
processors have access to a bigger cache per core and a
faster clock rate. Also, the direct mode of operation shows
better scalability than the conventional due to the increase in
the IO contention as the number of processes increase. We
also observed that if we increase the number of threads and
keep the number of processes constant, the runtimes stabilize
once the number of threads are equal to the number of cores
on which they are run. Even if we increase the number of
cores, the performance remains flat. Thus the best possible
combination for running the GAMESS application would be
to allocate individual threads to single cores.

The Tables IV and V, give the scalability results for
Franklin. For the conventional run of AT on Franklin, the
scalability improves by 60% when we move from 4 nodes
to 8 nodes but a quadruple increase in the number of nodes
(from 4 to 16) does not improve the performance 4 times.
The scalability is only 2.2 times in this case. Also, the
scalability actually reduces from 1.83 to 1.64 when we use
8 nodes to run 4 processes each instead of 4 nodes. Since
AT is a small molecule, running 32 processes increases the
communication delay leading to reduction in scalability. For



TABLE IV
AT SCF CONVENTIONAL ON FRANKLIN NERSC CLUSTER

Nodes 2 4 8 16

Procs Per Node

1 X X 1 1.66

2 X 1 1.59 2.22

4 1 1.83 1.64 X

TABLE V
AT SCF DIRECT ON FRANKLIN NERSC CLUSTER

Nodes 2 4 8 16

Procs Per Node

1 X X 1 1.86

2 X 1 1.95 3.42

4 1 1.77 3.08 X

the direct job execution of AT, the scalability looks good and
the performance nearly doubles when the number of nodes
is doubled. The quadrupling of the nodes does not have the
same effect though it does provide a three time increase in the
performance.

The Tables VI and VII, give the scalability results for
Franklin for MP2 computations. The results are based only
on the communication time measured using TAU. The default
MP2 option (CODE=DDI in the input file) uses remote
memory access to store the intermediate results. This causes
the spike in the communication time measured with TAU
[15]. The communication routines take about 90% of the
total time for conventional implementation and about 70%
of the total time for the direct implementation. We can see
from the tables that the scaling for the communication time
is constant for both conventional and direct implementation.
Comparing the scalability data for SCF and MP2, we see
an anomaly at 8X4 (4 processes each on 8 nodes) for the
conventional execution of SCF. There is a slowdown at 8X4
and this is due to an increase in the communication time
percentage. AT is a small molecule and the usage of 32
processes over 8 nodes causes congestion leading to a drop in
the execution performance. Such anomaly detection through
the scalability analysis module can be done for all molecules
using a combination of communication, computation, IO and
Total time.

These tables give us a good idea about the scalability
on different machines through the usage of the total time
taken by GAMESS jobs. We could use communication time,
IO time or computation time instead of total time and get
the same scalability analysis done. Also, this scalability
computation may be integrated with NICAN to provide

TABLE VI
AT MP2 CONVENTIONAL ON FRANKLIN NERSC CLUSTER USING

COMMUNICATION TIME

Nodes 2 4 8 16

Procs Per Node

1 X X 1 1.98

2 X 1 1.87 3.45

4 1 1.64 2.57 X

TABLE VII
AT MP2 DIRECT ON FRANKLIN NERSC CLUSTER USING

COMMUNICATION TIME

Nodes 2 4 8 16

Procs Per Node

1 X X 1 1.97

2 X 1 1.84 3.4

4 1 1.64 2.54 X

NICAN with scalability information for either monitoring or
adaptation.

VI. CONCLUSION

The performance characteristics of quantum chemistry
applications such as GAMESS is determined by its numerous
input parameters and the architecture on which the application
is executed. We conducted performance tests for different
molecule sets on multiple architectures. HF-SCF and MP2
computations for direct and conventional implementations
were tested. The data analysis was made simpler by the
use of a PostGreSql database to store the huge volume of
the performance data. The obtained performance data was
analyzed and a set of rudimentary and simple rules were
created to augment the existing adaptation process. A database
framework was created around NICAN so as to access the
PostGreSql database and aid GAMESS adaptation. The
performance data is collected offline and then inserted into
the database. The existing dynamic adaptation of GAMESS
has not been modified. The performance improvement
obtained by using the database framework has been shown up
to 40%. A scalability analysis module has also been created
which calculates the scalability of each architecture as a
medium to run GAMESS jobs.

It is not possible to store performance data and rules
for all the molecules used by the chemists. Hence, as a
future work, we envision that NICAN should be able to
recognize the similarity of the given input molecule with
the data available in the performance database and then
approximate the required data. Application related data such



as compiler options or system related data such as cache
performance data may be extracted from the application
execution and stored in the database. This can help us to
refine the adaptation strategy. The performance data has been
collected on different architectures. Each architecture has its
unique features but they also have features which can be
compared. Using the performance data, we intend to compare
different architectures and also extrapolate the performance
of GAMESS on other architectures. The granularity of the
performance data can be further increased so that we can
get the data within a particular computational phase or even
within an individual SCF iteration. The NICAN dynamic
adaptation algorithm can be modified to use communication
time or IO time, instead of just the iteration time to decide
on the switch between conventional and direct. The dynamic
adaptation algorithm is currently in use only for the SCF
iterations. MP2 has different implementations that can be
switched dynamically. Also, the DFT (Density Functional
Theory) implementation can be modified to use dynamic
adaptations.
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